
April 2001 The Delphi Magazine 65

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Auto-Repeat Toolbuttons

QYou showed us in Issue 22
how to make TButton compo-

nents auto-repeat. This allowed
the user to keep the left mouse but-
ton held down on a button and get
repeated clicks, a bit like the
auto-repeat behaviour of the key-
board. I have been trying to get the
same behaviour with tool buttons
but have not got anywhere with it
yet. Can you help?

AThe article in Issue 22 looked
at auto-repeat buttons be-

cause the TDBNavigator component
supports auto-repeat on a couple
of its speed buttons, and some peo-
ple had asked me how to get the
same effect with normal buttons.

To achieve the same result with
any kind of button requires a
similar approach, just taking care

to test it thoroughly. The project
AutoRptBtns.dpr on the disk has a
tool button, speed button and
normal button demonstrating this
auto-repeat behaviour. The tool
button just beeps the PC speaker
each time its OnClick event is trig-
gered, the speed button writes the
time on the form’s caption, and the
normal button gives the form a
random colour. To get auto-repeat
clicking for these buttons, a
number of steps have been taken.

Firstly, the buttons share the
same OnMouseDown, OnMouseMove and
OnMouseUp event handlers, which
do most of the work. Secondly, a
timer has been added to the form,
with its Enabled property set to
False. Finally, to allow the code to
be shared among a number of con-
trols, a private TControl data field
called Ctrl has been defined in the
form class. The code is in Listing 1.

The general idea is that, when
the mouse is clicked down on one
of these buttons, the timer is
enabled and has its Interval set to
some appropriate value. Each time
the timer ticks, the button’s Click
method is called in order to trigger
the OnClick event handler.

You can see that, to overcome
the fact that Click is protected in
the base TControl class (the type of
the Ctrl identifier), I have used a
simple access class. This is quite a
common trick to access protected
members of a class: define a shal-
low descendant of the class in the
unit where you are working, then
typecast the object into that
access class. You instantly get
access to the protected members.

If the mouse is moved whilst the
left mouse button is still down, the

➤ Listing 1: Auto-repeat buttons.

type
TForm1 = class(TForm)
ToolBar1: TToolBar;
ToolButton1: TToolButton;
Timer1: TTimer;
Button1: TButton;
SpeedButton1: TSpeedButton;
procedure AutoRepeatMouseDown(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

procedure AutoRepeatMouseUp(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

procedure AutoRepeatMouseMove(Sender: TObject; Shift:
TShiftState; X, Y: Integer);

procedure Timer1Timer(Sender: TObject);
procedure ToolButton1Click(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure SpeedButton1Click(Sender: TObject);

private
Ctrl: TControl;

end;
...
const
{ pause before repeat timer starts (ms) }
InitRepeatPause = 400;
{ pause before successive hits (ms)}
RepeatPause = 200;

type
//Access class needed to get at Click method,
//which is protected in the TControl base class.
//TControl is used so this code will work against
//any visual control with an OnClick event handler
TControlAccess = class(TControl);

procedure TForm1.AutoRepeatMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
Ctrl := Sender as TControl;
Timer1.Interval := InitRepeatPause;
Timer1.Enabled := True;
//Don't let the normal click happen when mouse is
//released, just the faked clicks from the timer will
//suffice
Ctrl.ControlState := Ctrl.ControlState - [csClicked];

end;

procedure TForm1.AutoRepeatMouseUp(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
//If timer didn't tick at all, do one click
if Timer1.Enabled
and (Timer1.Interval = InitRepeatPause) then
TControlAccess(Ctrl).Click;

Timer1.Enabled := False;
Ctrl := nil;

end;
procedure TForm1.AutoRepeatMouseMove(Sender: TObject; Shift:
TShiftState; X, Y: Integer);

begin
if Assigned(Ctrl) and (csLButtonDown in Ctrl.ControlState)
then with Ctrl do
Timer1.Enabled :=
PtInRect(Rect(0, 0, Width, Height), Point(X, Y))

end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
Timer1.Interval := RepeatPause;
try
TControlAccess(Ctrl).Click;
//If button has been disabled as a result of what
//happens in its OnClick method, shutdown timer
Timer1.Enabled := Ctrl.Enabled;

except
Timer1.Enabled := False;
raise;

end;
end;
procedure TForm1.ToolButton1Click(Sender: TObject);
begin
Beep

end;
procedure TForm1.Button1Click(Sender: TObject);
begin
Color := Random($1000000);

end;
procedure TForm1.SpeedButton1Click(Sender: TObject);
begin
Caption := TimeToStr(Time)

end;

66 The Delphi Magazine Issue 68

timer will be disabled if the mouse
moves off the button and
re-enabled when it moves back on.
This helps the usability of this
auto-repeat feature.

When the mouse is released, the
timer is disabled; however, if this
happens before the timer has had a
chance to tick once, meaning the
button’s OnClick event handler has
not yet been called, then this is
taken care of by calling the Click
method at this point.

One final mouse issue is that, by
default, when the mouse is
released the OnClick event will trig-
ger just by the default nature of the
button. To prevent this extra,
probably unwanted, click the
OnMouseDown event handler tweaks
the button’s ControlState set
property to tell it that it is not in the
process of being clicked at all.

The timer has two intervals set
during this process. When the
mouse is first clicked on the
button, its Interval is set to an ini-
tial delay defined in a constant
called InitRepeatPause (400 ms).
Each time the timer ticks, however,
Interval is changed to RepeatPause
(a smaller value of 200 ms).

Paradox And The Euro symbol

QI am developing an interna-
tional application and I need

to save the Euro currency symbol
(�) in a field in a Paradox table.
When I save it and then recall the
record, the Euro symbol changes
to a hash sign (#) or empty square,
or some other character. To sup-
port international characters, the
Table Language was set in Data-
base Desktop to Paradox (intl).

AThe Paradox (intl) language
driver was designed for use

in the DOS environment primarily.
It makes use of the characters set
up in DOS code pages and defines a
case-insensitive sort order com-
patible with the old Paradox for
DOS international sort order. Un-
fortunately, Microsoft has not
added the Euro symbol to the DOS
code pages, so the language driver
does not support it.

To verify this, I performed a test
with the Database Desktop running

on Windows 98. I made a new
Paradox table with one character
field and set the Table Language to
Paradox (intl). Then I added a
record to the table, inserted the
Euro symbol and tried to save the
record. For my trouble, I was
presented with the error Charac-
ter(s) not supported by Table
Language.

The Euro symbol was added to
some of the Windows fonts (Arial,
Courier New, Tahoma and Times
New Roman) as ANSI character
128, although other fonts still have
an empty square in position 128.
This means that, in an application
that is using one of these fonts
(such as a word processor), you
should be able to get the Euro
symbol by ensuring Num Lock is on,
holding down the Alt key and
typing 0128 on the numeric key
pad. Note that it has to be a four
digit number to get an ANSI
character. If you hold Alt and enter
the three digit number 128, you will
get the ASCII character 128, which
is Ç.

Since the Euro is an ANSI charac-
ter, you should get better results
by setting the Table Language to
Paradox ANSI Intl. A quick test in
Database Desktop reinforces this
suggestion (see Figure 1).

Lost Variables
In The Debugger

QWhen debugging my applica-
tion, I sometimes try to

evaluate a local variable and am
told it is unavailable due to optimi-
sation. What does this mean, and
how can I overcome it?

AWhen Delphi is installed, it
sets up a default number of

compiler switches. One of the
switches that is enabled is
optimisation (Project | Options...
| Compiler | Code generation |
Optimization). This asks the com-
piler to generate more efficient
code to help your program execute
more efficiently, using a number of
rules and strategies that it has
been programmed with.

In general, local variables are
implemented by the entry code of
their subroutine allocating some
space on the program stack for
them. This space is synonymous
with the local variable for the
extent of the subroutine’s execu-
tion and is freed by the routine’s
exit code. This means that the
local variable is truly in existence
throughout the routine’s life, and
so has some value at all times
(even if it is a garbage value due to
the variable not having been
assigned).

The program stack resides in
normal RAM. It is a known fact that
reading a value from RAM is slower
than reading a value from a CPU
register. One of the optimisations

➤ Figure 1: Setting the right
language driver for the Euro
symbol.

April 2001 The Delphi Magazine 67

that the compiler performs (when
the switch is on) is to store local
variables in CPU registers where
possible (bearing in mind CPU reg-
isters are only 32 bits wide) rather
than on the stack. However, since
there are only a handful of CPU
registers, this has to be done with
care.

The compiler analyses the use of
the variable in your code and typi-
cally associates the register with
the variable only when it is being
used. At all other times in the
routine, the register is used for
other tasks (maybe other local
variables, or temporary working
space for calculations, etc). So if
you try and examine the value of a
variable at a point before it is used
or after it has been used, the
debugger will alert you to the fact
that it doesn’t really exist at that
point: it has been optimised away
(see Figure 2).

The remedy for this, which helps
make debugging easier, is to turn
the optimisation switch off. Whilst
developing an application, I tend to
turn optimisation off, and turn
stack frames, range checking and
overflow checking on. In fact, since
these are the settings I use whilst
developing any project, I make
these the default project settings
(using the Default checkbox at the
bottom of the project options
dialog as shown in Figure 3). 32-bit
Delphi stores default project
options in defproj.dof in the Bin

directory, whereas Kylix stores
them in the file defproj.kof in the
~/.borland directory (the .borland
hidden directory under your home
directory).

When the development cycle is
over, the runtime checks can be
turned off, as can stack frames, and
optimisations can be turned on.
You should perform some testing
to ensure that things still work fine
with these different compiler set-
tings, but ultimately you will get
smaller and faster code for deploy-
ment with these different compiler
settings.

Public Properties

QWhat’s the point of declaring
a property as public? After

all, a published property will be
shown in the Object Inspector and
a protected property can be made
published in a descendant class.

AThe answer to
this question

lies in knowing what a
property is and what it
does. The question ap-
pears to be formed on
the basis of thinking
that a property’s use-
fulness lies solely in
being able to appear on
the Object Inspector,
but this is only part of
it. Let’s take a brief
refresher course on
what a property is.

Firstly, let’s look at a
few scenarios which do
not involve properties.

Take a simple class that repre-
sents a car where the speed can be
changed. A simple implementation
is shown in Listing 2. This type of
implementation is normally
frowned upon, as the class has no
control over the public data field.
Any code in the program can
modify the car’s speed at will,
potentially assigning ludicrous
values to it.

Consequently, when data is
defined in a class, we are advised
to make it private and use data
accessor routines (see Listing 3),
so called data hiding. C++ program-
mers are very familiar with these,
as they use them all the time. The
beauty of accessor routines
(sometimes called getters and set-
ters) is that you can add extra code
in them to do additional tasks,
such as validation, as shown in the
listing. Users of the class are
obliged to call these routines in
order to access the data, and
thereby invoke your extra code.

The downside to using getters
and setters is that the code that

➤ Figure 2: The Loop variable
has been optimised away.

➤ Figure 3: Setting default
compiler options.

TCar = class
public
Speed: Integer;

end;
...
var
Car: TCar;

...
if Car.Speed <> 0 then
Car.Speed := 999;

➤ Listing 2: Using a public data
field.

68 The Delphi Magazine Issue 68

calls them can end up looking a bit
messy. Ultimately we are dealing
with the speed of the car (one data
field), but we have to call two rou-
tines to manage it.

The property concept was intro-
duced to simplify this messy
coding, whilst maintaining the data
hiding that we have so far. Instead
of forcing the programmer to deal
with two identifiers for one value, a
single property is defined to do the
job. When the property is read
from, the getter is called, when the
property is assigned a value, and
that value is passed as a parameter
to the setter. The result is shown in
Listing 4.

As you can see, we are back to
using one identifier (the property),
but we still have the data hiding
and validation thanks to the getter
and setter. You can think of a prop-
erty giving us implementation
hiding: it hides the implementation
of our data hiding mechanisms.
Incidentally, whether the getter
and setter are made private or pro-
tected, and whether they are
marked as virtual or not, are
choices made by the implementer.

Whilst to the casual observer a
property may appear to be a data
item, Listing 4 shows that it is not.
A property has no storage of its
own. A property is defined in terms
of a data type (so the compiler can
validate its use in expressions) and
what happens when it is read from
and written to.

The property syntax is quite flex-
ible, as you can see if you look it up
in the Help. Notice that in our case
the getter does nothing other than
return the data field. Well, since
that is all the getter does, the prop-
erty syntax allows us to dispense
with it completely, leaving us with
Listing 5. The syntax of a property
allows a read operation to either
call a getter to retrieve a value, or
directly return the value of a (typi-
cally private) data field. Similarly,
the syntax also allows a write oper-
ation to either pass the value to a
setter, or directly update the value
of a data field.

Because the property retrieves a
value, either from a data field or
through a function call, and can be
given a value to store in a data field
or pass to a method, it can be

manipulated in code quite like it is
in fact a data item. In fact, this was
the whole design behind the prop-
erty syntax: to have an item that
looks like a piece of data but can do
other things behind the scenes.
Data with a side-effect, if you like.

Just to help reinforce this idea of
a property being more than a piece
of data, think about the Colorprop-
erty of a form. If you change Color
to a different value, the form actu-
ally repaints itself with a different
colour. If Color was just a data
item, assigning a new value to it
would cause that value to be
stored in the relevant area of
memory and nothing more would
happen. The fact that the form will
redraw tells us that code executes
when you assign to the Color prop-
erty (code in the Color property’s
setter routine).

All this so far has been an over-
view of properties. Getting back to
the question, I should say that
when a component author defines
a property that can be used by a
programmer, they have the choice
of making it public or published. It
is important to realise that in
either case, the property will be
accessible at runtime through
code. However, if the property is
published, it will also appear on
the Object Inspector when the
component is selected on the
Form Designer.

TCar = class
private
FSpeed: Integer;

public
function GetSpeed: Integer;
procedure SetSpeed(Value: Integer);

end;
...
function TCar.GetSpeed: Integer;
begin
Result := FSpeed

end;
procedure TCar.SetSpeed(Value: Integer);
const
TopSpeed = 100;

begin
//Validate value
if (Value <> FSpeed) then begin
if Value > TopSpeed then
Value := TopSpeed;

FSpeed := Value
end

end;
...
var
Car: TCar;

...
if Car.GetSpeed <> 0 then
Car.SetSpeed(999); //Car's speed will be set to 100

➤ Listing 3: Using data accessor
routines.

TCar = class
private
FSpeed: Integer;
function GetSpeed: Integer;
procedure SetSpeed(Value: Integer);

public
property Speed: Integer read GetSpeed write SetSpeed;

end;
...
var
Car: TCar;

...
if Car.Speed <> 0 then
Car.Speed := 999; //Car's speed will be set to 100

TCar = class
private
FSpeed: Integer;
procedure SetSpeed(Value: Integer);

public
property Speed: Integer read FSpeed write SetSpeed;

end;

➤ Listing 5: An optimised version of the property.

➤ Listing 4: A property in use.

70 The Delphi Magazine Issue 68

The reason someone chooses
either public or published is really
a case of which one makes sense. If
there is a case for pre-setting the
value of the property in the design-
time environment, then the prop-
erty will be published. If it does not
make sense to set it at design-time,
the property will be public.

The TListBox component gives a
good example of this. It makes
sense sometimes to pre-fill the
listbox with a number of text
strings, so the Items property is
published. However, at design-
time it is not possible to select any
items in a listbox (that is some-
thing which happens at runtime
only), so the ItemIndex property is
public. At runtime you can still
access either property via a listbox
object, but at design-time only the
published property is accessible
for pre-setting with a value.

The other point raised in the
question regards protected com-
ponent properties. It doesn’t really
affect the answer given so far, but
since it was mentioned, I should
address it. When component
authors build new components,
they often do it in two levels. Let’s
consider a fictitious component
TFoo. The author will build all the
functionality into a base class
called TCustomFoo, including all the
properties. However, all the prop-
erties that could validly appear on
the Object Inspector are placed in
the protected section of the class
(but public properties remain
public). TFoo then inherits from
TCustomFoo, adding nothing to the
class, but it publishes all the prop-
erties that it wishes to appear on
the Object Inspector.

The reason this is done is to
allow scope for other TFoo-like
components which do not need all
the properties visible at design-
time. A good example of this would
be TCustomEdit, which has no
published properties, but has a
lot of protected and public
properties. The TEdit descendant
adds no functionality but
publishes all the protected proper-
ties from TCustomEdit as well as
some from other classes in
the inheritance hierarchy, such
as Text. However, another

descendant of TCustomEdit,
TDBEdit, does add extra code, but
elects to not publish the Text
property.

Without TCustomEdit, imple-
menting TDBEdit would be a prob-
lem due to the occurrence of an
unwanted Text property, accessi-
ble at design-time and runtime. As
it is, the Text property is protected
in TDBEdit and cannot be accessed
by programmers.

Listing 6 shows the idea with the
TFoo component hierarchy.
TCustomFoo defines two properties
which could appear on the Object
Inspector, but are protected. TFoo
publishes them both, but
TDifferentFoo doesn’t want both of
them to appear and so leaves
SomeOtherProp being protected.

Popup Data Grids

QI heard someone say it is
possible to have a master/

detail query in a MIDAS client/
server application that makes use
of popup data grids. I’ve never seen
this done. Can you enlighten me?

AThis was a feature added in
Delphi 4 and offers an alter-

native to having two grids on the
MIDAS client form: the detail grid
can appear as a grid in a new float-
ing window. To see one in action,
we need to set up a MIDAS server
with a master/detail relationship
on it and then set up the client
application to show it.

Given that MIDAS keeps chang-
ing in each version of Delphi, the

steps that follow are for MIDAS 3 in
Delphi 5. They may also work in
Delphi 4, but I have a feeling there
may be the odd difference that you
need to take into account here and
there.

Firstly, the server which, for sim-
plicity of building, will talk to the
client via (D)COM. Make a fresh
project (the sample server on the
disk is OneToManyServer.dpr)
and add a remote data module to it
(File | New... | Multitier |
Remote Data Module). When it asks
for a CoClass name, specify
CustomerData, which means the
remote data module will be acces-
sible from the client with the
ProgID of OneToManyServer.Custo-
merData.

On the data module, set up two
datasets to represent tables which
have a master/detail relationship;
for example, two TTable compo-
nents and a TDataSource, or two
TQuery components and a TData-
Source. I chose to use tables,
simply because they are easier,
and have mapped them onto the
Customer and Orders tables from
the DBDEMOS database. The three
components are set up with names

TCustomFoo = class(TComponent)
private
FSomeProp: Integer;
FSomeOtherProp: Integer;
procedure SetSomeProp(Value: Integer);
procedure SetSomeOtherProp(Value: Integer);

protected
property SomeProp: Integer read FSomeProp write SetSomeProp;
property SomeOtherProp: Integer read FSomeOtherProp write SetSomeOtherProp;

end;
TFoo = class(TCustomFoo)
published
property SomeProp;
property SomeOtherProp;

end;
TDifferentFoo = class(TCustomFoo)
published
property SomeProp;
//Note that this component will not have SomeOtherProp
//available on the Object Inspector

end;

➤ Listing 6: Publishing protected
properties. object tblCustomer: TTable

DatabaseName = 'DBDEMOS'
TableName = 'customer.db'

end
object tblOrders: TTable
DatabaseName = 'DBDEMOS'
IndexName = 'CustNo'
MasterFields = 'CustNo'
MasterSource = dsCustomer
TableName = 'orders.db'

end
object dsCustomer: TDataSource
DataSet = tblCustomer

end

➤ Listing 7: A master/detail
relationship.

April 2001 The Delphi Magazine 71

and properties as shown in
Listing 7.

To make this data available
through the remote data module,
we next add a TDataSetProvider
from the MIDAS page of the Compo-
nent Palette and connect it to
tblCustomer via the DataSet prop-
erty. Rename the component
dspCustomer.

In order to make the server
usable it must be registered. This
can be done by running it with a
command-line parameter of
/regserver, whereupon it will run,
register itself and terminate. How-
ever, it is easier to simply run the
program normally, where it will
register itself and then need to be
closed normally.

With the server complete and
registered we can now create the
client (an example client is on the
disk as OneToManyClient.dpr).
Make another project and drop a
TClientDataSet (called cdsCus-
tomer) and TDCOMConnection (called
dcOneToManyServer) on the form.
The DCOM connection object
needs information about the
server application, which we
will give through its ServerName
property.

When you drop down the list of
available values, the property
editor makes sure that the ProgIDs
of any MIDAS servers are displayed
(see Figure 4). This rather handy
feature of identifying all the MIDAS
servers on a machine is ultimately
achieved by the property editor
through the undocumented

procedure GetMIDASAppServerList
in the MConnect unit.

Having chosen the server, you
can verify that it can be connected
to by setting the Connected prop-
erty to True. If all is well, you should
see your server application appear
on the screen. You may as well
leave it connected, since other
properties we need to set will use
the connection (and re-establish it
first if you close it now).

Now go to the client dataset and
link it to the DCOM connection
component via the RemoteServer
property and then choose which
provider from the server to map
onto using the ProviderName prop-
erty. You should see the only
option offered is dspCustomer, the
name of our dataset provider. The
property editor used the connec-
tion to the server to ascertain this
information.

The final steps are to add a
TDataSource and connect it to the
client dataset, then add a TDBGrid
and connect it to the data source.
Also, to avoid the server always
running when the client is open at
design-time, set the DCOM connec-
tion object’s Connected property to
False, then make an OnCreate event
handler for the form and call the
client dataset’s Openmethod there.

When you run the client pro-
gram, the server will be launched
and a connection will be made.
This allows the client grid to be
filled in with data. If you scroll
across to the last column in the
grid, it has a heading of tblOrders
and each ‘value’ is (DATASET). Click-
ing on one of these cells a couple of

times will invoke the in-place
editor and show an ellipsis button
(...). Pressing the button displays
the extra floating grid (Figure 5).
As you select different rows in the
main grid on the form, the floating
grid updates to show the detail
records for the selected customer.

If clicking a cell to select it, click-
ing it again to get the ellipsis
button, then clicking the ellipsis
button, seems too much trouble
(as it seems to be for many people)
there are several ways to make this
more usable. First, the main grid
on the form can have dgAlways-
ShowEditor set in the Options prop-
erty. This removes one click from
the equation.

Perhaps a better way would be
to remove the funny looking end
column from the main grid and to
float the popup grid through code.
You could also use one of the ideas
shown in my Drag And Dock article
from Issue 63 to allow the grid to be
displayed and hidden as needed,
maybe using a menu item or
checkbox in conjunction with an
action. Another client project on
the disk, OneToManyClient2.dpr,
shows this idea.

When the form is created, the
client dataset is opened as usual.
Then the columns in the grid are
searched for the one whose type is
TDataSetField, which is hidden
from view when found. After that,
the popup grid is displayed on the
screen just below the normal grid
using the main grid’s ShowPopup-
Editor method. Once the popup

➤ Figure 4: Locating the MIDAS
server at design-time.

➤ Figure 5: A popup TDBGrid.

72 The Delphi Magazine Issue 68

TClientForm = class(TForm)
private
FPopupGrid: TCustomDBGrid;

end;
...
procedure TClientForm.FormCreate(Sender: TObject);
var
I: Integer;
Pt: TPoint;
Col: TColumn;

begin
cdsCustomer.Open;
//Locate and hide dataset field column
Col := nil;
for I := 0 to DBGrid1.Columns.Count - 1 do
if DBGrid1.Columns[I].Field is TDataSetField then begin
Col := DBGrid1.Columns[I];
Col.Visible := False;
Break //There is one dataset field column

end;
if not Assigned(Col) then
raise EDatabaseError.Create(
'Trouble brewing... dataset field not found');

//Display popup grid below other grid
Pt := Point(DBGrid1.Left, DBGrid1.Top + DBGrid1.Height);
Pt := ClientToScreen(Pt);
DBGrid1.ShowPopupEditor(Col, Pt.X, Pt.Y);
//Because the popup grid has been displayed,
//it remains in existence with the main grid, so
//save reference to it for later use
for I := 0 to DBGrid1.ComponentCount - 1 do
if DBGrid1.Components[I] is TCustomDBGrid then
FPopupGrid := TCustomDBGrid(DBGrid1.Components[I]);

if not Assigned(FPopupGrid) then
raise EDatabaseError.Create(
'Trouble brewing... popup grid not found')

end;

grid is visible, the code searches for it by iterating
through all the components owned by the main grid.
Once found, a reference to it is stored, since the popup
grid will now stay in existence until the main grid is
destroyed. This code can be found in Listing 8.

There is a checkbox on the form connected to an
action in an action list (actShowPopupGrid). The
checkbox reflects and controls the visibility of the
popup grid (see Figure 6). Toggling the checkbox

procedure TClientForm.actShowPopupGridExecute(
Sender: TObject);

begin
FPopupGrid.Visible := not actShowPopupGrid.Checked

end;
procedure TClientForm.actShowPopupGridUpdate(
Sender: TObject);

begin
actShowPopupGrid.Checked := FPopupGrid.Visible

end;

➤ Listing 8: Setting up for a more accessible
popup grid.

➤ Listing 9: Using an action to control the popup
grid.

➤ Figure 6:
A more
accessible
popup grid.

makes the popup grid appear and disappear. Also,
thanks to the action’s OnUpdate event handler, closing
the popup grid will update the checkbox (see Listing
9).

You can get a more thorough discussion of
master/detail relationships and MIDAS in Bob Swart’s
Under Construction column from Issue 46. In fact, if you
tire of the popup grid, you can go back to having two
grids and two client datasets on the client form, as
discussed in that article.

Acknowledgements
Thanks go to Borland’s Steve Axtell for the information
on Paradox language drivers.

	Auto-Repeat Toolbuttons
	Paradox And The Euro symbol
	Lost Variables In The Debugger
	Public Properties
	Popup Data Grids
	Acknowledgements

